Coin change

By   Tewodros   Date Posted: Oct. 10, 2023  Hits: 493   Category:  Algorithm   Total Comment: 0             A+ A-


side

Given different denominations of coins and a total amount, find the minimum number of coins that make up that amount. If that amount cannot be made up by any combination of the coins, return -1.

Example:

int[] coins = {1, 2, 5};

int amount = 11;

Outputs

3 (because 11 = 5 + 5 + 1)

 

Solution:

 

This problem is similar to combination sum

public int CoinChange(int[] coins, int amount) {

   int result = CoinChangeRecursive(coins, amount);

   return result == int.MaxValue ? -1 : result;

}

 

private int CoinChangeRecursive(int[] coins, int amount) {

   // Base cases

   if (amount == 0) return 0;

   if (amount < 0) return int.MaxValue;

 

   int minCoins = int.MaxValue;

   foreach (var coin in coins) {

       int result = CoinChangeRecursive(coins, amount - coin);

       if (result != int.MaxValue) {

           minCoins = Math.Min(minCoins, result + 1);

       }

   }

 

   return minCoins;

}


This problem is similar to combination sum

Example 1:

Input:

 candidates = [2,3,6,7], target = 7

Output:

 [[2,2,3],[7]]

 

public class Solution {

    public IList<IList<int>> CombinationSum(int[] candidates, int target) {

         List<IList<int>> ans = new List<IList<int>>();

         BackTrack(candidates,0, target,new List<int>(), ans);

         return ans;

    }

    

       public void BackTrack(int[] cand, int start,int target,List<int> list, List<IList<int>> result)

            {

                if (target < 0)

                    return;

                if (target == 0)

                    result.Add(new List<int>(list));


 

                for (int i = start; i < cand.Length; i++)

                {

                    list.Add(cand[i]);

                    BackTrack(cand, i, target - cand[i], list, result);

                    list.RemoveAt(list.Count-1);

                }

            }

}


Tags



Back to Top



Related Blogs






Please fill all fields that are required and click Add Comment button.

Name:*
Email:*
Comment:*
(Only 2000 char allowed)


Security Code:* gbqhkh

Back to Top