knapsack

By   Tewodros   Date Posted: Oct. 10, 2023  Hits: 411   Category:  Algorithm   Total Comment: 0             A+ A-


side

Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack.

Inputs:

  • values[]: Array representing the values of the items.
  • weights[]: Array representing the weights of the items.
  • W: Total capacity of the knapsack.
  • n: Number of items.

Output:

  • Maximum value that can be achieved with items whose combined weight is less than or equal to W.

Example

int[] values = {60, 100, 120};

int[] weights = {10, 20, 30};

int W = 50;

int n=3;

int result = Knapsack(weights, values, W);

Outputs: 220

 

One practical application of this problem is the problem of loading items in a container of limited carrying capacity in such a way that it maximizes the value by carrying the minimum weight. Items with great value but minimum weight will be selected. 

Solution: We can use dynamic programming to solve this problem. Let's define a 2D array dp[i][w] where i is the item index and w is the weight. dp[i][w] will represent the maximum value we can achieve using the first i items and a knapsack of weight w.

Here's the C# code to solve the Knapsack problem:

public int KnapsackRecursive(int[] values, int[] weights, int n, int W) {

   // Base condition

   if (n == 0 || W == 0) return 0;

 

   // If the weight of the nth item is more than the capacity W,

   // then this item cannot be included in the optimal solution

   if (weights[n - 1] > W) {

       return KnapsackRecursive(values, weights, n - 1, W);

   }

 

   // Return the maximum of two cases:

   // (1) nth item included

   // (2) nth item not included

   return Math.Max(

       values[n - 1] + KnapsackRecursive(values, weights, n - 1, W - weights[n - 1]),

       KnapsackRecursive(values, weights, n - 1, W)

   );

}

 

This solution is not efficient for larger values

we need to store previously computed values in a dictionary or array. This technique is called memoization.

public int Knapsack(int[] values, int[] weights, int W) {

   int totalItems = weights.Length;

   int?[,] memo = new int?[totalItems, W + 1];

   return KnapsackRecursive(values, weights, W, totalItems - 1, memo);

}

 

private int KnapsackRecursive(int[] values, int[] weights, int W, int n, int?[,] memo) {

   // Base cases

   if (n < 0 || W <= 0) {

       return 0;

   }

 

   // If result is already computed, return it

   if (memo[n, W].HasValue) {

       return memo[n, W].Value;

   }

 

   // Exclude the current item

   int exclude = KnapsackRecursive(values, weights, W, n - 1, memo);

 

   // Include the current item (if possible)

   int include = (weights[n] <= W)

       ? values[n] + KnapsackRecursive(values, weights, W - weights[n], n - 1, memo)

       : 0;

 

   // Store the result in memo table and return the maximum of include and exclude

   memo[n, W] = Math.Max(include, exclude);

   return memo[n, W].Value;

}

 

 

 


Tags



Back to Top



Related Blogs






Please fill all fields that are required and click Add Comment button.

Name:*
Email:*
Comment:*
(Only 2000 char allowed)


Security Code:* xzhvhv

Back to Top