Find Largest Container With Most Water

By   Tewodros   Date Posted: Dec. 6, 2021  Hits: 1,109   Category:  Algorithm   Total Comment: 0             A+ A-


side

Given an array of positive integers representing a height of a container we want to find the largest area of with most water.

Example:

A= {5,3,6,4,2}  Ans = 12

Solution

As it is indicated in the above picture, the largest area that can be constructed with the given heights is 12 (see yellow highlighted rectangle)

We can use a brute force approach first.

We will need a nested loop wit i and j. We will go  one by one and compute the area of each rectangle that can be constructed with i and j.

Area = min height of i and j   times   the horizontal distance covered by i and j

We take the minimum because we cannot draw a rectangle if we take the longest height.

  public int MaxAreaBruteForce(int[] height)

   {

       int maxarea = 0;

       int min = 0;

 

       //brute force

       for (int i = 0; i < height.Length; i++)

       {

           for (int j = i + 1; j < height.Length; j++)

           {

               min = Math.Min(height[i], height[j]);

               maxarea = Math.Max(maxarea, min * (j - i));

           }

       }

       return maxarea;

   }

 

 

The optimal approach will be based on two pointers.

Instead of checking areas n*n times where n is the length of the given array, we can optimize that by passing through the array only one times using two pointers.

We will have i going forward starting from index 1 and j coming backwards staring from n and we basically do what we did in the body of the inner loop in the brute force solution. The only thing we check is we need to increment i or decrement j based on who will give us the biggest area. 

 

  public static int MaxAreaOofNWorks(int[] height)

   {

       int maxarea = 0;

       int min = 0;

 

       int i = 0;

       int j = height.Length - 1;

       while (i < j)

       {

           min = Math.Min(height[i], height[j]);

           maxarea = Math.Max(maxarea, min * (j - i));

           if (height[i] < height[j])           

               i++;           

           else

               j--;

       }

       return maxarea;

   }

 

 


Tags



Back to Top



Related Blogs






Please fill all fields that are required and click Add Comment button.

Name:*
Email:*
Comment:*
(Only 2000 char allowed)


Security Code:* bgbjcz

Back to Top